
O.P.Code: 20ME0336 R20 H.T.No.			П
SIDDHARTH INSTITUTE OF ENGINEERING & TECH! (AUTONOMOUS) ech. IV Year I Semester Regular & Supplementary Examination OPERATION RESEARCH			r-20;
Time: 3 Hours (Mechanical Engineering)	Max	. Mark	re: 6
- (Answer all Five Units 5 x 12 = 60 Mar	rks)		
1 Solve the following by using Big-M method. M Z=2X ₁ +3X ₂ +4X ₃ , Subjected to 3X ₁ +X ₂ +4X ₃ < 2X ₁ +4X ₂ +2X ₃ > 480, 2X ₁ +3X ₂ +3X ₃ = 540 and X ₁ ,X ₂ ,X ₃ > 0.	aximize COI 600,	L3	12
OR			
 a Discuss the applications of Operations Research. b Discuss the types of operation Research models. 	COL		6
Discuss the types of operation Research models.	C01	L2	61
3 Determine the basic Feasible solution to the formal Transportation problem using NWC, VCM and VAM? A B C D E SUPPLY	(P. 1877)	L5	12
P 2 11 10 3 7 4			
Q 11 4 7 2 1 8 R 3 9 4 8 12 9			
DEMAND 3 3 4 5 6			
OR			
4 a What is Transportation Problem?	CO2	LI	61
b What is travelling salesman problem?	ĈO2	LI	68
UNIT-III			
Solve the following GAME, using the Dominance Principle	e, CO3	L3	12
7 8 5 9 10 8 9 11 10 9 6 4 10 6 4			
OR	19/27414		
a State briefly the applications of queuing models.	CO3	LI	6N
b What is game theory? What are the various types of game	es? CO3	LI	6N

8	Explain the	Forwa	rd Pass	comput	O) ations fo		et Evan	t Time	CO4	L.2	6М
	in detail.			1100000				e Time		A. C.	Otra
38	b Explain the	followi	ing			15			C04	1.2	6M
	 i) critical e float 	vent ii) critica	al activit	y iii)	Total f	loat	iv) Free	10000	7777.0	
20	200				UNIT	r-v					
•	Assume that present value of one rupee to be spent in a years' time is Re.0.90 and C=Rs 6000, Capital cost of equipment .Running costs are given in the table below. When should the								1,5	12M	
	Year (n)	1	2 1	3	4	5	6	7	1	-	
	Running cost (MC) in Rs.	1000	1200	1600	2000	2600	3200	4000			
	machine be	replace	d?		OF		-				
8 1	What are th	e seque	ntial ste	ps invol			ing inhe	9	CO5	L1	6M
t	Explain the	Bellma	n's prin	ciple of	optimal	itv.	ng Joos		CO5	1.2	6M
		1.0	-		** END	***					Second